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A new method to generate flattened Gaussian beam
by incoherent combination of cosh Gaussian beams
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A new method is proposed which makes it possible to produce flattened irradiance distribution by incoher-
ent combination of cosh Gaussian beams with different parameters. Based on the Collins integral formula,
the resulting irradiance distribution is derived and the corresponding beam qualities in terms of M2 factor
and kurtosis parameter are given. The numerical examples illustrate that a flattened intensity distribution
of the resulting beam can be obtained in the near filed if appropriate parameters are chosen. Compared
with the coherent combination of the Hermite-Gaussian (HG) beams, this new method leads to better
beam quality and can be more easily realized experimentally resulting from in-phase-free requirement.
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Flattened Gaussian beam (FGB), which is the so-called
supper-Gaussian beam[1], has a nearly uniform irradiance
distribution at a certain cross-section[2], so it has been ap-
plied in many fields, such as material treating, wielding,
drilling, inertial confine fusion as well as optical informa-
tion processing. By now, there has been much interest
in its properties[3−6] and practical produce methods, e.g.
vibrating mirror for smoothing and alignment-free res-
onator methods, have been presented[7,8]. Some theoret-
ical means, such as supposition of multi-Gaussian beams
with different waist parameters and elegant Laguerre-
Gaussian mode, were put forward to produce FGB[9,10].
Recently, coherent combination of the Hermite-Gaussian
(HG) beams has been proved a feasible way to produce
FGB in theory[11]. This method, however, faces a critical
difficulty due to the fact that keeping the beams in-phase
is not easy in practice. To overcome the disadvantage,
a new method to produce FGB by incoherent combina-
tion of cosh Gaussian (ChG) beams is proposed in this
paper. According to the Collins integral formula, the
irradiance distribution of incoherent resulting beam and
corresponding beam quality factors are derived. One can
find that if the appropriate parameters are chosen, the
incoherent combination of ChG beams has the flat-top
intensity distribution. Compared with the HG coherent
combination, this new method does not require all the
phases of beams equal, which is desirable for laser engi-
neers. M2 factor and kurtosis parameter are chosen to
characterize the beam quality. The parameters of ChG
affecting the resulting beam pattern are investigated by
numerical method.

For simplicity, only one dimensional (1D) model is
considered since two dimensional (2D) configuration can
be generalized from 1D model. Given that the linear
laser array consists of N equal elements which are Her-
mite cosh Gaussian (HChG) mode in the x direction
and Gaussian mode in the y direction positioned at the
plane z = 0, whose waist width of the TEM00 is ω0 and
separate distance is xd, respectively, as shown in Fig.
1. The number N of the array may be odd and even,
and positive even is set in this paper. We suppose that
the initial phases of the beams are equal to zero, the
field distributions of the beams at the input plane can
be given by[12]

Emn(x, y, 0) = Hp

[√
2
(x − mxd)

ω0

]

exp
[
− (x − mxd)2 + (y − nyd)2

ω2
0

]
cosh [Ω0(x − mxd)] , (1)

where m ∈ [−M−1
2 , M−1

2 ], n ∈ [−N−1
2 , N−1

2 ], Ω0 is the
parameter associated with the cosh part, b = Ω0ω0 is
called decentered parameter, Hp denotes the Hermite
polynomial of order p. When p = 0, the HChG beam
mode reduces to the ChG mode[12]. For generalization,
in this paper, we adopt the HChG mode instead of ChG
mode.

The propagation of the beam described by Eq. (1)
passing through a first-order optical system obeys the
well-known Collins integral formula[13]

En(x1, y1, z) =
i

λB

∫ ∫
En(x, y, 0)

exp
{
− iκ

2B

[
A(x2 + y2) − 2(xx1 + yy1) + D(x2

1 + y2
1)

]}
dxdy, (2)

where κ is the wave number related to the wavelength
λ by κ = 2π/λ. In fact, for convenience and simplic-
ity a constant phase factor is omitted in Eq. (2) since
it has not effect on the relative intensity distribution of
the beam. A, B, C and D are the elements of a transfer
matrix with the condition that AD − BC = 1 for the
complete optical system between the input and output
planes. When the beams propagate through a thin lens
with focal length f , the corresponding ABCD matrix can
be expressed as(

A B
C D

)
=

(
1 0

−1/f 1

)
. (3)

Substituting Eqs. (1), (3), and (4) into Eq. (2) yields

Fig. 1. Schematic illustration of the 1D off-axis HChG.
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where

x′ =
x1

ω0
, y′ =

y1

ω0
; d =

xd

ω0
,

and the Nf = ω2
0/λf is the Fresnel number associated

with the beam, and Δz = (z−f)
f .

Now, the near field distribution of input beam at the
propagation plane Δz = −1 can be obtained from Eq.
(4) with the normalized parameters for the incoherent
case as

I(x′, y′,−1) =
∑

n

En(x′, y′,−1)E∗
n(x′, y′,−1) (5)

with ∗ being the complex conjugation.
M2 factor is often used to characterize the resulting

beam quality. According to the second-moment defini-
tion of the variance σ2

x in the spatial domain and the vari-
ance σ2

sx in the spatial-frequency domain[14], the M2
x fac-

tor for the incoherent combination case was given by[15]
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For flattened beam, the flatness degree is a very im-
portant parameter to valuate the beam quality, which
is called kurtosis parameter defined as following in one
transversal dimension[15]

K =

〈
x4

〉
(〈x2〉)2 , (7)

where
〈
x4

〉
and

〈
x2

〉
denote the fourth and second ir-

radiance moments, respectively. From Eqs. (4) and (5)
and the moment definition, the kurtosis parameter at the
Δz = −1 plane has been given by Ref. [14].

In this part, firstly we will give some numerical exam-
ples to indicate the flattened distribution of the resulting
beam. First of all d = 1.5 and b = 1.04 are assumed,
according to Eqs. (4) and (5), the irradiance of the re-
sulting beam as a function of normal waist width for
different beam numbers N is shown in Fig. 2. It il-
lustrates that if the parameters are chosen suitably the
incoherent combination of the ChG beams can yield flat-
tened pattern and the width of the resulting beam is
directly proportional to beam number N , which is simi-
lar to the properties of coherent of HG beams as Fig. 2
depicted in Ref. [11].

Secondly suppose the separate distance of the beam
d= 1, one can find that the flattened distribution occurs
when the N and b change, according to the expressions
of M2 factor and kurtosis parameters the beam quality
curves are given by Figs. 3(a) and (b). Figure 3(a) shows
that the M2 factor does not decrease linearly with b, and
a best beam quality exists with the increase of b for a
given beam number N . It can also be derived from Fig.
3(a) that b value for best beam quality becomes slightly
larger with N increasing while the beam quality becomes
worse when the beam number increases due to the width
increase as shown in Fig. 2. For a given beam number
Fig. 3(b) illustrates that the degree of the flatness at first

Fig. 2. Irradiance profile of the resulting beam with d = 1.5
and b = 1.04 for different values of N .

Fig. 3. Beam quality of the resulting beam as a function
of b for different values of N . (a) M2

x factor, (b) kurtosis
parameters.
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decreases (kurtosis value rises) and then increases as b
increases, which is exact inverse to change tendency of
the M2 factor. The worst flatness degree occurs for the
different b with N largening, but the difference of b with
worst flat for different N is larger compared with that of
the M2 factor. It also shows that for the small value of
b, e.g. b from 0 to 1.7, the kurtosis parameters augment
as beam number N increases, which is in agreement with
the result in Fig. 2, the trend, however, which is almost
reverse for the b value larger than 3.5. At the range of
b from 1.7 to 3.5, there exists crossing and the variable
trend is not monotonous with N . Considering the two
change tendencies, if N > 2, it is best to choose b ≈ 1.5
to obtain the best small M2 factor and relative small
kurtosis parameter value.

Lastly the flattened intensity distribution occurs under
the condition of the increases of both b and d, which is a
pair of parameters. If the parameters are suitable, e.g.,
when d = 1.5, 1.6, 1.8, 2.0, the corresponding b = 1.04,

Fig. 4. (a) Irradiance profile of the resulting beam with b
and d increasing at the same time, (b) the corresponding
M2

x factor and (c) kurtosis parameters as a function of beam
number N .

1.19, 1.10, 1.285, respectively, as shown in Fig. 4(a). Fig-
ure 4(a) also shows that the decreases of b and d result in
narrowing the width of the resulting beam. Figures 4(b)
and (c) illustrate the beam quality with different pairs of
parameters. For the M2 factor, it decreases more slowly
when b and d decrease, which is evident for large N value.
The degree of flatness rises when the b and d increase,
which is not evident for the N larger than 10. Kurtosis
parameters value in Ref. [11] is almost beyond 2, which
is larger than that of the incoherent combination only if
the N > 3 is satisfied, as shown in Fig. 4(c).

In summary, we put forward a new way to produce flat-
tened Gaussian beam by incoherent combination of ChG
beams. The combination properties are investigated in
detail by numerical simulation. The results prove that
this new method is feasible if the appropriate parame-
ters are chosen. They also indicate the M2 factor and
kurtosis parameters of the resulting beam are related to
separate distance d of the beams, beam number N and
decentered parameter b. The width of resulting beam is
direct ratio to N monotonously. When d = 1, M2 factor
increases while kurtosis value decreases with b varying
from 1 to 1.7, which is reverse for b beyond 3.5. When
b is about 1.5, the best M2 factor can be obtained while
the worst kurtosis value is obtained when b within the
range from 1.2 to 3. Compared with the coherent com-
bination of HG method, this new way is easy to realize
due to in-phase-free need.
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